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Background 
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Schematics of fluid flow and heat transfer in a scramjet engine 

(Source: FPCE group, Stanford University) 
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Why High-Order CFD Methods?  

7/24/2015 

2nd order 4th order 

DOFs* for the 2nd order scheme: (60×60)×4=14400 

DOFs for the 4th order scheme: (30×30)×16=14400 

*: DOFs is short for degrees of freedom 

Euler vortex propagation 
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Computational Cost of High-Order Methods 

July 24, 2015 

Computational cost per degree of freedom vs. polynomial order 

Euler vortex propagation, linear elements 
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Objectives 

July 25, 2015 

 Develop robust localized Laplacian artificial viscosity 

(LLAV) shock capturing procedures for the high-

order flux reconstruction/correction procedure via 

reconstruction  (FR/CPR) method 

 

 Explore flow physics of complex shock-boundary 

layer interaction over surface roughness with the 

high-order FR/CPR-LLAV method  



8 

Contents 

7/25/2015 TFAWS 

Background 

Shock/Boundary Layer Interaction (SBLI) 

Numerical Methods & Verification 

Conclusions & Future Work 

 SBLI over smooth walls 

 SBLI over surface roughness 



9 TFAWS 

Flux Reconstruction/Correction Procedure via 

Reconstruction (FR/CPR) 

7/25/2015 
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 Very efficient high-order algorithm 

 Generalization of discontinuous Galerkin and spectral difference/volume 

 Compact, suitable for parallel computation 
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 First developed by H. T. Huynh (2007) 
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Localized Laplacian Artificial Viscosity 

Laplacian: 𝑭𝑎𝑣 𝑄, 𝛻𝑄 = 𝜀𝛻𝑄 

𝜀𝑒 =

0 
𝜀0
2

1 + 𝑠𝑖𝑛
𝜋 𝑆𝑒 − 𝑆0

2𝜅
 

𝜀0

  

𝑖𝑓 𝑆𝑒 < 𝑆0 − 𝜅                  
𝑖𝑓 𝑆0 − 𝜅 ≤ 𝑆𝑒 ≤ 𝑆0 + 𝜅
𝑖𝑓 𝑆𝑒 > 𝑆0 + 𝜅.                 

 

For each element 𝑒: 

Resolution-based smoothness indicator: 

𝑆𝑒 = 𝑙𝑜𝑔10
𝑄 − 𝑄𝑝𝑟𝑜𝑗 , 𝑄 − 𝑄𝑝𝑟𝑜𝑗

𝑒

𝑄,𝑄 𝑒
, 

𝜀0 = 𝑓(∆𝜉𝑚𝑎𝑥 , 𝑃𝑒) ∙ ℎ ∙ 𝜆 𝑚𝑎𝑥, based on the definition of the 

𝑃𝑒 𝑐𝑙𝑒𝑡 number 𝑃𝑒 for a diffusion process: 

 

Parameters in 𝜀𝑒: 

𝜕𝑄

𝜕𝑡
+ 𝛻 ∙ 𝑭𝑖𝑛𝑣 𝑄 = 𝛻 ∙ 𝑭𝑎𝑣 𝑄, 𝛻𝑄  

July 24, 2015 
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Localized Laplacian Artificial Viscosity (Cont.) 

July 24, 2015 

P.-O. Persson  

& J. Peraire 

(2006) 

Adopted in  

current study 

Modeling criteria: 

 The artificial viscosity 𝜀0 is non-negative; 

 When the resolution of the numerical scheme is infinite, the 

artificial viscosity 𝜀0 → 0; 

 The modeling is compatible with the classic results from the 2nd 

order accurate (or equivalently 𝑃1 reconstruction) methods.  
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1D Shock Tube Problem 

July 24, 2015 

Density distribution at t = 0.2s Density distribution at t = 0.13s 

Sod Problem Harten-Lax Problem 
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Shu-Osher Problem 

July 25, 2015 

Density distribution at t = 1.8s 

Overview Close-up view 
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Shock-Isentropic Vortex Interaction 

Pressure 

Artificial viscosity 

Free stream Ma =1.1,  

𝑃3 reconstruction (4th order), 

Computational domain:  

0,2 × [0,1],  
100 × 50 elements. 

An isentropic vortex is 

superposed  to the supersonic 

flow. 

July 24, 2015 
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Double Mach Reflection 

Density 

Ma =10, 𝑃3 reconstruction (4th order), 𝑡 ∈ [0, 0.2𝑠] 

Computational domain 0,4 × [0,1], 816 × 204 elements 

Artificial 

viscosity at 

t=0.2s 

Density at 

t=0.2s 

July 24, 2015 
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Double Mach Reflection (Cont.) 

July 24, 2015 

CPR-P2, LLAV, h=1/60 

CPR-P3, LLAV, h=1/60 

CPR-P2, LLAV, h=1/102 CPR-P2, LLAV, h=1/204 

CPR-P3, LLAV, h=1/102 CPR-P3, LLAV, h=1/204 
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Ma 3 Wind Tunnel with a Forward Facing Step 

Free stream Ma =3,  

𝑃2 reconstruction (3rd 

order), 

Grid  size:  1/80, with 

clustered elements of 

size 1/320 near the 

sharp corner. 

Artificial viscosity at t=4s 

Density at t=4s 

July 24, 2015 
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Initial & Boundary Conditions 
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Adiabatic wall 

Symmetry 

𝝆𝑳, 𝒖𝑳, 𝒗𝑳, 𝒑𝑳  

= 𝟏𝟐𝟎, 𝟎, 𝟎, 𝟏𝟐𝟎/𝜸  

𝝆𝑹, 𝒖𝑹, 𝒗𝑹, 𝒑𝑹  

= 𝟏. 𝟐, 𝟎, 𝟎, 𝟏. 𝟐/𝜸  
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SBLI over Smooth Walls at Re=200 

7/25/2015 

2nd order MUSCL scheme on a 3000 × 1500 

mesh (4.5 × 106 DOFs) (Sjogreen & Yee, 2003) 

𝝆 𝑻 

𝑃2 reconstruction on a 500 × 250 mesh (1.125 × 106 DOFs) 

7th order FD scheme on a 1000 × 500 mesh 

(0.5 × 106 DOFs) (Daru & Tenaud, 2009) 

Ref. 𝝆 Ref. 𝑻 
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SBLI over Smooth Walls at Re=1,000 
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Density field 

Distribution of 

LLAV 
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SBLI over Smooth Walls at Re=1,000 (Cont.) 
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7th order FD scheme on a 

4000 × 2000 mesh 

(8 × 106 DOFs)  

(Daru & Tenaud, 2009) 

3rd order, 𝟐𝟓𝟎 × 𝟏𝟐𝟓 mesh 

 5.625× 𝟏𝟎𝟒 DOFs 

4th order 

5 × 𝟏𝟎𝟓 DOFs 

  

5th order 

7.8125× 𝟏𝟎𝟓 DOFs 

6th order 

1.125× 𝟏𝟎𝟔 DOFs 



23 

Contents 

7/25/2015 TFAWS 

Background 

Shock/Boundary Layer Interaction (SBLI) 

Numerical Methods & Verification 

Conclusions & Future Work 

 SBLI over smooth walls 

 SBLI over surface roughness 



24 TFAWS 

Wall Roughness Set-Up 
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Triangular roughness 

element 

Rectangular roughness element 

Rectangular cavity roughness 

element 

Original 

wall 

For all cases, the Reynolds number is 𝑅𝑒 = 1,000 

𝐻/𝐷 
Triangular 

Element 

Rectangular 

Element 

Rectangular 

Cavity 

Element 

1/32 Tri_H1 - - 

1/16 Tri_H2 - - 

1/8 Tri_H3 - - 

1/4 Tri_H4 Rec_H4 Rec_Cav_H4 

1/2 - - Rec_Cav_H5 

Cases summary 
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SBLI over Triangular Surface Elements 

7/25/2015 

Tri_H1 Tri_H4 

Density fields 



26 TFAWS 

Flow Fields Comparison of Different H/D 
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𝝆 𝑻 
𝐻

𝐷
=

1

32
 

𝐻

𝐷
=

1

16
 

𝐻

𝐷
=
1
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𝐻

𝐷
=
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Streamlines & Temperature near Roughness 
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Smooth 𝐻 𝐷 = 1 32  

𝐻 𝐷 = 1 16  𝐻 𝐷 = 1 8  𝐻 𝐷 = 1 4  
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Wall Temperature Comparison of Different H/D 

7/25/2015 

Overview of wall temperature  Close-up view of wall temperature 
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Flow Fields over Rectangular Roughness 
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Smooth 

𝐻 𝐷 = 1 4  

𝝆 

𝑻 
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Wall Temperature Comparison of Different H/D 
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Overview of wall temperature  Close-up view of wall temperature 
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Flow Fields over Rectangular Cavity Roughness 

7/25/2015 

𝝆 

𝑻 

𝐻 𝐷 = 1 4  𝐻 𝐷 = 1 2  
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Streamlines & Temperature near Roughness 

7/25/2015 

Smooth 

𝐻 𝐷 = 1 4  𝐻 𝐷 = 1 2  
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Wall Temperature Comparison of Different H/D 
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Overview of wall temperature  Close-up view of wall temperature 
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Wall Temperature Comparison of Different 

Types of Roughness Elements 

7/25/2015 

Overview of wall temperature  Close-up view of wall temperature 
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Conclusions & Future Work 

 A localized Laplacian artificial viscosity (LLAV) stabilization 

procedure is developed for the high-order unstructured-grid-based 

flux reconstruction/correction procedure via reconstruction 

(FR/CPR) method. 

 The FR/CPR-LLAV method is used to simulate shock-boundary 

layer interaction (SBLI) with and without wall roughness. 

 The FR/CPR-LLAV method can sharply capture shock structures 

and efficiently resolve boundary-layer separation features 

 The FR/CPR-LLAV method is capable of flow simulation over 

complex geometry 

 The FR/CPR-LLAV method is compact, and therefore, is suitable 

for parallel computing 

7/25/2015 
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Conclusions & Future Work (Cont.) 

 Effects of surface roughness on SBLI are numerically investigated.  

 Surface roughness can substantially modify the interaction between 

the shock and the boundary layer, thus affecting surface heat transfer 

processes 

 In the current 2D study, the triangular roughness elements with 

relatively large height-width ratio can enhance the mixing near the 

wall 

 The rectangular (cavity) roughness elements with relatively large 

height-width ratio can trap the evolving separation vortices, resulting 

in redistribution of surface temperature  

7/25/2015 

 More studies on 2D roughness elements of different types 

 Extension to 3D shock-turbulence interaction 
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